Some mathematics preparation for Econ 2450

Nippe Lagerlöf

November 2, 2014

Course mostly about using economic models

Requires a bit of math to understand

Nothing that should be news

What follows is a useful summary

Numbers

Natural numbers: 1, 2, 3...

Integers: ... - 2, - $1,0,1,2 \ldots$

Real numbers: "all" numbers that lie on the real line (e.g.
$5,-100, \pi=3.14 \ldots, \frac{1}{11}$)

Rational numbers: numbers that can be written as $\frac{a}{b}$ where a and b are integers

Irrational numbers: real numbers that are not rational numbers

Inequalities

$a>b$ means a is strictly greater than b
$a \geq b$ means a is weakly greater than (i.e., greater than or equal to) b

Double inequalities, intervals

If $a>b$ and $a<c$ we can write

$$
b<a<c
$$

or

$$
a \in(b, c)
$$

Means a lies on the (open) interval (b, c)

If $a \geq b$ and $a \leq c$ we can write

$$
b \leq a \leq c
$$

or

$$
a \in[b, c]
$$

Means a lies on the (closed) interval $[b, c]$

If $a>b$ and $a \leq c$ we can write

$$
b<a \leq c
$$

or

$$
a \in(b, c]
$$

Means a lies on the (half-open) interval ($b, c]$

Functions

Here: mostly single-variable functions

What are functions?

- Functions are "rules"
- Functions describe how one variable depends on another variable
- Same as everyday speak: "the grade is a function of how much you study..."

Graphs are used to illustrate functions in diagrams

Definitions

A function $f(x)$ of a real variable x with domain D_{f} is a rule which assigns a unique real number to each number in D_{f}
D_{f} can be defined by a simple statement, e.g. $D_{f}=$ $[0,1]$

The set of values that $f(x)$ takes as x varies over D_{f} is called the range of f, and is denoted R_{f}

All functions in this course will be given by formulas, e.g.

$$
\begin{aligned}
& f(x)=2 x^{2} \\
& f(x)=3 x-14 \\
& f(x)=b+a x
\end{aligned}
$$

where a and b are constants, i.e., do not depend on the variable x

Exponential and logarithmic functions

Power functions take the form

$$
f(x)=a^{b x}
$$

where a and b are constants
a is the base; $b x$ is the exponent

If $a=e$, where e is defined from

$$
e=\lim _{n \rightarrow \infty}\left(1+\frac{1}{n}\right)^{n} \approx 2.71828
$$

then we get an exponential function:

$$
f(x)=e^{b x}
$$

The (natural) logarithmic function

$$
f(x)=\ln (x)
$$

is defined from

$$
e^{\ln (x)}=x
$$

Note that:

- $e^{b x}>0$ for all x
- $\ln (x)$ is defined only for $x>0$

Some important equalities

$$
\begin{gathered}
\ln (x y)=\ln (x)+\ln (y) \\
\ln \left(\frac{x}{y}\right)=\ln (x)-\ln (y) \\
\ln \left(x^{a}\right)=a \ln (x) \\
e^{x+y}=e^{x} e^{y} \\
\left(e^{x}\right)^{y}=e^{x y}
\end{gathered}
$$

Derivatives

Many functions can be differentiated

To differentiate a function is the same as taking the derivative of the function (but not same as e.g. deriving a function)

The derivative of $f(x)$ is (usually) denoted $f^{\prime}(x)$ and defined from

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

On notation

There are many ways to denote derivatives

We often denote $f(x)$ by some some other variable y, and write $y=f(x)$

We can then write $f^{\prime}(x)$ as any of the following: y^{\prime}
$\frac{\partial y}{\partial x}$
$\frac{\partial f(x)}{\partial x}$

$$
\begin{aligned}
& \frac{d y}{d x} \\
& \frac{d f(x)}{d x}
\end{aligned}
$$

The notation $\partial f(x) / \partial x$ is usually referred to as the partial derivative of $f(x)$ with respect to x

The notation $d f(x) / d x$ is usually referred to as the total derivative of $f(x)$ with respect to x

When $f(x)$ as only one argument (i.e., $x)$ the total and partial derivatives mean the same thing

Differentiating some common functions

$$
\begin{gathered}
f(x)=x^{2} \Rightarrow f^{\prime}(x)=2 x \\
f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2} \\
f(x)=x^{n} \Rightarrow f^{\prime}(x)=n x^{n-1} \\
f(x)=e^{a x} \Rightarrow f^{\prime}(x)=a e^{a x} \\
f(x)=\ln (x) \Rightarrow f^{\prime}(x)=\frac{1}{x}=x^{-1} \\
f(x)=\frac{1}{x}=x^{-1} \Rightarrow f^{\prime}(x)=\frac{-1}{x^{2}}=-x^{-2}
\end{gathered}
$$

Some rules

The chain rule

$$
f(x)=g[h(x)] \Rightarrow f^{\prime}(x)=g^{\prime}[h(x)] h^{\prime}(x)
$$

The product rule

$$
f(x)=g(x) h(x) \Rightarrow f^{\prime}(x)=g^{\prime}(x) h(x)+g(x) h^{\prime}(x)
$$

A special case of the product rule: let

$$
f(x)=\frac{g(x)}{k(x)}=g(x) h(x)
$$

where $h(x)=1 / k(x)$; then

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) \overbrace{\left[\frac{1}{k(x)}\right]}^{h(x)}+g(x) \overbrace{\left(-\left[\frac{1}{k(x)}\right]^{2} k^{\prime}(x)\right)}^{h^{\prime}(x)} \\
& =\frac{g^{\prime}(x) k(x)-g(x) k^{\prime}(x)}{[k(x)]^{2}}
\end{aligned}
$$

Some other useful tricks:

$$
\begin{gathered}
\frac{f^{\prime}(x)}{f(x)}=\frac{\partial}{\partial x}[\ln (f(x))] \\
f(x)=g(x) h(x) \Rightarrow \frac{f^{\prime}(x)}{f(x)}=\frac{g^{\prime}(x)}{g(x)}+\frac{h^{\prime}(x)}{h(x)}
\end{gathered}
$$

Optimization

Consider the problem of finding some x [in the domain of $f(x)$] that maximizes $f(x)$

That x is called a (global) maximum point of $f(x)$

Often denoted x^{*}, defined from

$$
f\left(x^{*}\right) \geq f(x) \text { for all } x \in D_{f}
$$

If the graph is $f(x)$ is shaped like an inverted U the maximum point is easy enough to see; draw to illustrate

Often we have a formula for $f(x)$ and want to find the maximum point in terms of the constants (parameters) of $f(x)$

The first-order condition

The maximum point of $f(x)$ must satisfy certain conditions

One such condition states that the derivative of $f(x)$ equals zero when evaluated at the maximum point: called the first-order condition (FOC)

Example: let $f(x)=x(1-x)$, where $D_{f}=[0,1]$
Task: find the maximum point of $f(x)$

Find $f^{\prime}(x)$, using product rule

$$
f^{\prime}(x)=1-x+x(-1)=1-2 x
$$

Setting $f^{\prime}\left(x^{*}\right)=1-2 x^{*}=0$ gives

$$
x^{*}=\frac{1}{2}
$$

The second-order condition

Sometimes the FOC gives not a maximum point but a minimum point

Example: $f(x)=\frac{x^{2}}{2}-x ; f^{\prime}(x)=0$ gives $x=1$, which is a minimum point

How can we check if the FOC gives a minimum or a maximum?

- In this course the problems are (almost always) rigged so that the FOC gives whatever you are looking for (the minimum or maximum point)
- More generally, we can look at the second derivative of $f(x)$, denoted $f^{\prime \prime}(x)$
- Called second-order condition (SOC)

- SOC states that:

* For x^{*} to be a (local) maximum it must hold that $f^{\prime \prime}\left(x^{*}\right)<0$
* For x^{*} to be a (local) minimum it must hold that $f^{\prime \prime}\left(x^{*}\right)>0$

Implicit differentiation

Sometimes we do not have an explicit expression for $f(x)$
Instead, $f(x)$ may be defined implicitly

Example: let y be a function of x defined from

$$
G(x, y)=0
$$

Task: find $d y / d x$
Think of both $G(x, y)$ and y as functions of x

Differentiate both sides with respect to x using chain rule

$$
\frac{\partial G(x, y)}{\partial x}+\frac{\partial G(x, y)}{\partial y} \frac{d y}{d x}=0
$$

Solve for $d y / d x$

$$
\frac{d y}{d x}=-\frac{\frac{\partial G(x, y)}{\partial x}}{\frac{\partial G(x, y)}{\partial y}}
$$

Called implicit differentiation

Note:

- If $\partial G(x, y) / \partial x$ and $\partial G(x, y) / \partial y$ have the same sign, then $d y / d x<0$
- If $\partial G(x, y) / \partial x$ and $\partial G(x, y) / \partial y$ have different signs, then $d y / d x>0$
"Kinked" functions (involving curly brackets)

Often we want to make sure that a function has a particular range

Example:

- $f(x)$ denotes a probability and is linear in x
- $D_{f}=\mathcal{R}_{+}=[0, \infty)$
- Must make sure R_{f} falls within $[0,1]$
- Solution: to "cut off" the function so that $f(x) \leq 1$ for all $x \in D_{f}$

$$
f(x)=\left\{\begin{array}{cc}
a x & \text { if } x \leq 1 / a \\
1 & \text { if } x>1 / a
\end{array}\right.
$$

Draw graph with kink at $x=1 / a$

Statistics and probability theory

Let x be a (discrete) stochastic variable

Can take N different values: $x_{1}, x_{2}, \ldots, x_{N}$

Associated probabilities:
$\pi_{1}=$ probability that x takes value x_{1}
$\pi_{2}=$ probability that x takes value x_{2}
$\pi_{N}=$ probability that x takes value x_{N}

Must hold that probabilities sum up to one:

$$
\pi_{1}+\pi_{2}+\ldots+\pi_{N}=\sum_{i=1}^{N} \pi_{i}=1
$$

$E(x)$ denotes the mean, or expected value, of x

Definitions of mean and variance:

$$
\begin{gathered}
E(x)=\pi_{1} x_{1}+\pi_{2} x_{2}+\ldots+\pi_{N} x_{N}=\sum_{i=1}^{N} \pi_{i} x_{i} \\
V(x)=\pi_{1}\left[x_{1}-E(x)\right]^{2}+\pi_{2}\left[x_{2}-E(x)\right]^{2} \\
+\ldots+\pi_{N}\left[x_{N}-E(x)\right]^{2} \\
=\sum_{i=1}^{N} \pi_{i}\left[x_{i}-E(x)\right]^{2} \\
=E\left[\{x-E(x)\}^{2}\right]
\end{gathered}
$$

Useful to note that we can develop expression in square brackets to write variance as

$$
\begin{gathered}
V(x)=\left(\pi_{1} x_{1}^{2}+\pi_{2} x_{2}^{2}+\ldots+\pi_{N} x_{N}^{2}\right)-[E(x)]^{2} \\
=\left(\sum_{i=1}^{N} \pi_{i} x_{i}^{2}\right)-[E(x)]^{2} \\
=E\left(x^{2}\right)-[E(x)]^{2}
\end{gathered}
$$

If x and y are both stochastic:

$$
\begin{aligned}
& E(x+y)=E(x)+E(y) \\
& E(x-y)=E(x)-E(y)
\end{aligned}
$$

If a is a (non-stochastic) constant:

$$
\begin{aligned}
E(a) & =a \\
E(a+x) & =a+E(x) \\
E(a x) & =a E(x)
\end{aligned}
$$

$$
\begin{aligned}
V(a) & =0 \\
V(a+x) & =V(a)+V(x)=V(x) \\
V(a x) & =a^{2} V(x)
\end{aligned}
$$

