Econ 5011 - Midterm Exam 9 February 2005

Problem 1. Consider the Solow model with Cobb-Douglas production, where capital per effective worker evolves according to

$$k(t) = sf(k(t)) - (n + g + \delta)k(t).$$

The notation is completely standard: total capital is K(t); k(t) = K(t)/[A(t)L(t)] is capital per effective worker; A(t) is efficiency units per worker; L(t) is the number of workers; s is the rate of saving; δ is the depreciation rate; g is the growth rate of A(t); and n the growth rate of L(t). Total output is Y(t), and output per effective worker is given by f(k(t)) =y(t) = Y(t)/[A(t)L(t)]. Consumption per effective worker is given by c(t) = (1 - s)f(k(t)). At some time \tilde{t} the growth rate of A(t) (i.e., g), rises from g_0 to g_1 , where $0 < g_0 < g_1 < \infty$. To get full score on (a) to (c) below you do not need to write any equations, or explain anything; just draw the graphs correctly.

(a) Draw a graph showing the time path of k(t). [3 marks]

(b) Draw a graph showing the time path of c(t). [3 marks]

(c) Draw a graph showing the time path of log output per worker, $\ln[Y(t)/L(t)]$. [4 marks]

Problem 2. Consider a Ramsey model, where population is constant (n = 0) and there is no technological progress (g = 0), and no depreciation $(\delta = 0)$. Utility is given by

$$U = \int_{t=0}^{\infty} e^{-\rho t} \ln[c(t)] dt$$

where ρ is the utility discount rate, c(t) is per-capita consumption, and $\ln[c(t)]$ is the instantaneous utility function.

The budget constraint on "flow" form is given by:

$$k(t) = w + rk(t) - c(t),$$
 (*)

where w and r are here constant and exogenous.

Setting initial assets, k(0), to zero the present-value form of the budget constraint becomes:

$$\int_{t=0}^{\infty} e^{-rt} c(t) dt = \int_{t=0}^{\infty} e^{-rt} w dt.$$

The (present-value) Hamiltonian associated with maximizing U subject to (*) becomes:

$$H(c(t), k(t), \lambda(t), t) = e^{-\rho t} \ln [c(t)] + \lambda(t) [w + rk(t) - c(t)].$$

The optimality conditions are: $H_c(\cdot) = 0$, and $H_k(\cdot) = -\lambda(t)$ (plus a transversality condition which we do not need for this exercise).

(a) Show how to find an expression for c(t)/c(t) is terms of exogenous parameters (i.e., the Euler equation), using the Hamiltonian and the optimality conditions provided. [4 marks] (b) Find an expression for c(t) in terms of w, ρ , r, and t. [4 marks]

(c) Assume that $r > \rho$. It can then be shown that there exists a t^* , such that c(t) > w for all $t > t^*$. Find t^* in terms of r and ρ . [2 marks]

Problem 3. Consider a Diamond model where consumption in working age $(C_{1,t})$ and old age $(C_{2,t+1})$, are perfect complements, so that utility is given by:

$$U_t = \min \{C_{1,t}, C_{2,t+1}\}$$

Agents choose consumption in old and working age so as to maximize U_t subject to

$$C_{2,t+1} = [w_t A_t - C_{1,t}] (1 + r_{t+1}),$$

where $w_t = f(k_t) - f'(k_t)k_t$ is the wage per effective worker; $k_t = K_t/[A_tL_t]$ is the period-*t* capital stock per effective worker; K_t is total capital in period *t*; A_t is efficiency units per worker in period *t*; $r_{t+1} = f'(k_{t+1})$ is the interest on saving held from period *t* to t+1 (there is no depreciation); and L_t is the working population in period *t*. Capital accumulation is given by:

$$K_{t+1} = S_t L_t$$

where $S_t = w_t A_t - C_{1,t}$.

(a) Find optimal S_t as a function of $w_t A_t$ and r_{t+1} . [5 marks]

(b) Assume Cobb-Douglas production, $f(k_t) = k_t^{\alpha}$, and let $A_{t+1} = (1+g)A_t$, and $L_{t+1} = (1+n)L_t$. It can be seen that there is a level $\overline{\alpha}$, such that $\alpha < \overline{\alpha}$ must hold for a strictly positive steady state level of k_t to exist. Find an expression for $\overline{\alpha}$ in terms of n and g. [5 marks]

Solutions

Problem 1: see figures below. To see where the answer to (c) comes from, let z(t) = Y(t)/L(t) = A(t)f(k(t)). Then $z(t)/z(t) = g + \alpha(k) \left\{ k(t)/k(t) \right\}$, where $\alpha(k) = f'(k)k/f(k) \in (0,1)$. To see what happens to the slope of $\ln[z(t)]$ at \tilde{t} , keep k(t) fixed and differentiate with respect to g. Using the expression for k(t) we see that this is increasing in g.

Problem 2: (a)

$$H_{c}(\cdot) = e^{-\rho t} \left(\frac{1}{c(t)}\right) - \lambda(t) = 0$$
$$H_{k}(\cdot) = \lambda(t)r = -\lambda(t) \implies \frac{\lambda(t)}{\lambda(t)} = -r$$

Using the above we get:

$$e^{-\rho t} \left(\frac{1}{c(t)}\right) = \lambda(t)$$
$$-\rho t - \ln[c(t)] = \ln[\lambda(t)]$$
$$-\rho - \frac{c(t)}{c(t)} = \frac{\lambda(t)}{\lambda(t)} = -r$$
$$\frac{c(t)}{c(t)} = r - \rho$$

(b) The differential equation $c(t) = (r - \rho) c(t)$ derived under (a) can be solved as $c(t) = c(0)e^{(r-\rho)t}$. Using the present-value budget constraint we get:

$$\int_{t=0}^{\infty} c(t)e^{-rt} = \int_{t=0}^{\infty} e^{-rt}wdt$$
$$c(0)\int_{t=0}^{\infty} e^{-rt}e^{(r-\rho)t} = w\int_{t=0}^{\infty} e^{-rt}dt$$
$$c(0)\int_{t=0}^{\infty} e^{-\rho t} = w\int_{t=0}^{\infty} e^{-rt}dt$$

$$\frac{c(0)}{-\rho} \left[\overbrace{e^{-\rho \times \infty}}^{=0} - \overbrace{e^{-\rho \times 0}}^{=1} \right] = \frac{w}{-r} \left[\overbrace{e^{-r \times \infty}}^{=0} - \overbrace{e^{-r \times 0}}^{=1} \right]$$
$$\frac{c(0)}{\rho} = \frac{w}{r}$$
$$c(0) = \frac{\rho w}{r}$$

which can be substituted into $c(t) = c(0)e^{(r-\rho)t}$; this gives:

$$c(t) = \frac{\rho w}{r} e^{(r-\rho)t}$$

(c) Using the answer under (b), setting $c(t^*) = w$, we see that

$$\frac{w\rho}{r}e^{(r-\rho)t^*} = w$$
$$\ln(\frac{\rho}{r}) + (r-\rho)t^* = 0$$
$$t^* = \frac{\ln(r) - \ln(\rho)}{r-\rho}$$

Problem 3:

(a) The utility function is such that $C_{1,t} = C_{2,t+1}$ must hold. Using the budget constraint, and $S_t = w_t A_t - C_{1,t}$, this gives:

$$C_{2,t+1} = S_t(1+r_{t+1}) = w_t A_t - S_t = C_{1,t}$$

Solving for S_t we get

$$S_t = \frac{w_t A_t}{2 + r_{t+1}}.$$

(b) Cobb-Douglas production implies that $w_t = (1 - \alpha)k_t^{\alpha}$, and $r_{t+1} = \alpha k_{t+1}^{\alpha-1}$. Using the answer under (a) gives:

$$k_{t+1} = \frac{1}{(1+n)(1+g)} \frac{(1-\alpha)k_t^{\alpha}}{2+\alpha k_{t+1}^{\alpha-1}} = \frac{Dk_t^{\alpha}}{2+\alpha k_{t+1}^{\alpha-1}}$$

where

$$D = \frac{1 - \alpha}{(1+n)(1+g)}$$

A steady state $k^* > 0$ (if such exists) would thus be given by:

$$k^* = \frac{D(k^*)^{\alpha}}{[2+\alpha(k^*)^{\alpha-1}]}$$
$$k^* \left[2 + \alpha(k^*)^{\alpha-1}\right] = D(k^*)^{\alpha}$$
$$2k^* + \alpha(k^*)^{\alpha} = D(k^*)^{\alpha}$$
$$2k^* = \left[D - \alpha\right](k^*)^{\alpha}.$$

For this equality to hold for some strictly positive k^* , $D - \alpha$ must be positive. That is:

$$D = \frac{1 - \alpha}{(1+n)(1+g)} > \alpha$$

or

$$\alpha < \frac{1}{(1+g)(1+n)+1} \equiv \overline{\alpha}$$

